

© 2018, Union of Municipalities of New Brunswick. All Rights Reserved.

The preparation of this plan was carried out with assistance from the Green Municipal Fund, a Fund financed by the Government of Canada and administered by the Federation of Canadian Municipalities. Notwithstanding this support, the views expressed are the personal views of the authors, and the Federation of Canadian Municipalities and the Government of Canada accept no responsibility for them.

Acknowledgements

We would like to express our deepest appreciation to all those who provided support to our team to complete reports, annexes and all tools developed in this UMNB initiative.

- A special gratitude to UMNB general managers, Mrs. Margot Cragg and Mr. Raymond Murphy (deceased).
- We want to thank Eddie Oldfield Spatial QUEST for its technical contribution with the mapping, the workshops organisation and all the work provided.
- We also want to present special thanks to all stakeholders and municipal employees who have contributed to achieve the UMNB CCEI.

CONTENTS

I.	Introduction
II.	The Plan's Strategy
III.	The Community's profile
IV.	The Plan's Summary
	The Inventory
	The Plan
	Appendix
VII.	Appendix

I. INTRODUCTION

Communities across Canada are facing the effects of climate change. Some have to deal with greater droughts, others with more violent storms.

Municipal governments have a leading role to play in climate protection. They have direct or indirect control over nearly half of Canada's greenhouse gas (GHG) emissions (350 million tons).

Canada's goal is to reduce its GHG emissions by 30% below 2005 levels under the Paris Agreement.

The CLIMATE CHANGE AND ENERGY INITIATIVE (CCEI)

Municipalities in New Brunswick are increasingly aware of environmental challenges they face, and are particularly concerned with actual and future impacts of climate change.

The **Town of Sussex** joined the Climate Change and Energy Initiative of the Union of Municipalities of New Brunswick, to reinforce its efforts to advance in the Partners for Climate Protection Program (PCP). The UMNB initiative fits perfectly in the global and national context of addressing climate change, following the Paris Agreement (COP 21).

THE PARTNERS FOR CLIMATE PROTECTION

(PCP) PROGRAM is a network of Canadian municipal governments that have committed to reducing greenhouse gases (GHG) and to acting on climate change. Since the program's inception in 1994, over 300 municipalities have joined PCP, making a public commitment to reduce emissions. PCP membership covers all provinces and territories and accounts for more than 65 per cent of the Canadian population. PCP is the Canadian component of ICLEI's Cities for Climate Protection (CCP) network, which involves more than 1,100 communities worldwide. PCP is a partnership between the Federation of Canadian Municipalities (FCM) and ICLEI — Local Governments for Sustainability.

Sussex is engaged:

- ✓ Climate Change and Energy Initiative (CCEI) of the Union of Municipalities of New Brunswick, 2017
- ✓ Member Partners for Climate Protection program, FCM, 2016
- ✓ The Greater Sussex Hampton Region Economic Development Strategy, 2017

I. INTRODUCTION

In addition to the Corporate GHG Action Plan, the Community GHG & Energy Plan is the UMNB CCEI <u>second foundation stone</u>.

The Plan brings a powerful and dynamic tool to help communities for smart and sustainable development allowing to reduce its carbon print.

What is a Community GHG & Energy Plan? The Plan is a long-term plan that identifies ways to reduce GHG emissions and to support the Municipality's local economy by increasing its competitiveness, helping to create local or regional jobs in the energy sector, improving energy efficiency, and improving energy security.

In 2018, planning and coordinating energy use and GHG emission reduction at the community level remains innovative especially for smaller size communities outside metropolitan areas. However, in cities or communities where it has been done, it has resulted in some of the most efficient, and from an energy standpoint, most cost-competitive cities in the world, with resulting reductions in associated environmental impacts.

The communities that are leaders have taken an integrated energy systems approach looking at the potential for innovation in how energy is sourced, generated, consumed, re-captured, conserved, stored, and delivered. **The UMNB CCEI's Community GHG & Energy Plan** will be a "living document", in that the actions taken by the Municipality and community stakeholders are expected to grow and change over time.

Why a Community & GHG Energy Action Plan? The Plan is great tool to face community transformation challenges encountered in New Brunswick: Climate change impacts, population growth or decline, development growth and economic transformation.

Those challenges push municipalities and communities to examine ways to reduce its cost of services while continuing to maintain and enhance the quality of life. And how energy is used, and the cost of that energy to residents as well as to the municipality, is an important factor. Smart solutions also reduce environmental impacts associated with the consumption of energy. A good strategy and planning can enhance prosperity by making the municipality more economically competitive.

Enhancing access to energy efficiency, conservation and demand-management opportunities can also have a positive effect on the local retail and service industry. Businesses that increase the energy efficiency of their facilities and operations can improve their competitiveness in the marketplace.

II. THE PLAN'S STRATEGY

Vision

The vision of the Plan is to achieve a low carbon and smart energy community in an economically viable way:

Reducing its carbon footprint by increasing energy conservation, using energy efficiently through new development and retrofits, transportation planning, producing renewable or clean energy, helping to improve local energy security.

Goals

The vision is supported by a series of goals that bring focus to mitigating climate change, improving energy performance within the community and creating economic advantage:

- 1. Foster a shift towards low carbon technologies.
- 2. Increase energy efficiency for new and existing buildings.
- 3. Foster a shift towards low carbon transportation that integrates EV infrastructure, promotes alternative fuel vehicles, low carbon fuel options, as well as public transit and active transportation as mechanisms to reduce the number of vehicles on the road.
- 4. Create or help adaptive, sustainable, affordable, and reliable local renewable and clean energy supply.
- 5. Design, build, and revitalize neighbourhoods as complete communities that offer multi-modal transportation options.
- 6. Create new market opportunities for innovative energy solutions that are attractive for local and new businesses, and through high quality, affordable, clean energy services foster retention and growth of existing businesses and industries.
- 7. Build awareness about energy investment and create a culture of energy conservation amongst residents, business, institutions, and industries.
- 8. Build knowledge, skills, and technical capacity through partnerships that deliver innovative energy solutions at the local scale.

II. THE PLAN'S STRATEGY

The principles provide direction for the development of the projects and initiatives presented in the Plan. To build and implement an action plan and portfolio of environmentally and economically successful projects all proposed solutions, projects, or initiatives should consider these principles:

- 1. Advocate for urgent action to address climate change
- 2. Set achievable reduction targets
- 3. Maximize benefits for the municipality and the community

- 4. Ensure and enhance a sustainable energy system
- 5. Maximize efficient use of energy
- 6. Design model and innovative projects
- 7. Build on existing programs and funds: for example, FCM and GMF programs, Environmental Trust Fund, NB Power programs, etc.
- 8. Create a competitive and economic advantage for the Community
- 9. Demonstrate global leadership

GHG Emission Reduction Target

10% for 2025 and 30% for 2035

For the Community Plan, GHG emission reduction target is set on a voluntary and non-binding basis. It is important that the targets are ambitious while being realistic both in their importance (projected reductions) and in their duration (year of maturity). Before setting the reduction targets and the action plan timeline, we took into account:

- ✓ PCP and GMF recommendations is -6% over the base year, within 10 years.
- √ The objectives of the Government of New Brunswick.*
- √ The GHG reduction potential of the municipality and its community.

* The New Brunswick's Climate Change Action Plan "Transitioning to a Low-Carbon Economy" (2017) - The provincial government will: 31 - Establish specific GHG emission targets for 2020, 2030 and 2050 that reflect a total output of:

a - 14.8 Mt by 2020;

b - 10.7 Mt by 2030; and

c - 5 Mt by 2050.

II. THE PLAN'S STRATEGY

Timeline For efficiency, the choice of a pertinent timeline is essential. Because the scope of the Community Plan is important and imply major technological and behavioral changes, we recommend a 20 years timeline. However, for reviewing and monitoring process the Community Plan propose a 10 year step in 2025 concordance with the **Corporate GHG Action Plan**.

Approach and developing the Plan

Background data was collected via energy distributors in New Brunswick and from various other provincial and federal sources. Electricity data was provided by NB Power, Saint John Energy and Perth Andover Electric and Light Commission.

For all participant, a workshop was held to do a mapping exercise through a community GHG & energy planning process. The workshop allowed the team, the municipality and its stakeholders to identify areas or sectors where GHG reduction projects, conservation and efficiency measures could be focused, to assess the potential for local generation, particularly renewable energy, and look at the energy implications of future growth and prosperity. Webinars were held with each participants to finalize the Corporate GHG & Energy Action Plan as well as to prepare the final workshop to complete the Community GHG & Energy Action Plan. Each municipality CCEI manager invited to workshops and webinars, stakeholders they considered important to assist, councillors and municipal employees.

Each Community Plan include a presentation document and more importantly is also build with a series of tool joined in annexes:

- Annexe A: Project's description with implementation procedures
- Annexe B: Excel Projects Sheets with GHG and energy data calculation
- Annexe C: Mapping document for Workshop (Spatial Quest)

As final step, the Community and the Corporate plan are submitted to the Participant Municipality to be adopted by resolution.

YHC Environnement, an energy planning and environment consultant, was retained by UMNB to provide services to produce inventories, action plans and the various tool needed. Spatial Quest was hired to do the GHG and energy mapping related to workshop's organisation and as liaison agent with the concerned stakeholders in New Brunswick.

III. THE COMMUNITY'S PROFILE

The Town of Sussex is located in the Kennebecasis River Valley in Kings County, southern New Brunswick. The Town is 81 km southwest of Moncton and 75 km northwest of St. John. The town has a complex territory, bordering the parish of Sussex to the north, Sussex Corner to the east, the parish of Sussex in the south and Studholm in the west.

The population of Sussex in 2016 was 4,282 inhabitants spread over an area of 8.95 km², a density of 478.3 hab./km². The Municipality had 2,147 private dwellings in 2016, of which 1,988 were occupied by full time residents. 78% of the dwellings were built before 1991.

The official languages spoken by the population of Sussex are English at 98%, French at 1.5% and both official languages at 0.5%.

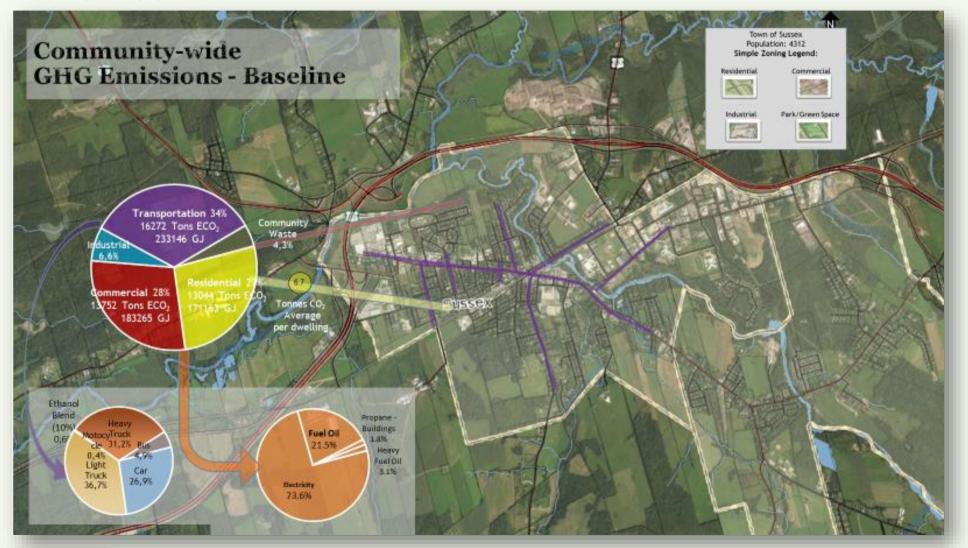
The town entered economic difficulty during the late 1990s after the Cassidy Lake potash mine flooded, resulting in hundreds of lay-offs.

The town developed as a service centre to surrounding communities. Historically a farming community, Sussex has capitalized on its excellent geography to become a leading transportation, manufacturing, distribution and service centre in Atlantic Canada.

Municipal & Community-wide GHG Emissions — With a plan

Community GHG Emissions

2020

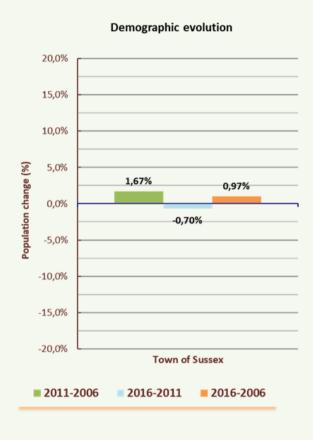

The properties of the community of the

PICTURE 1: SUSSEX'S MAP

III. THE COMMUNITY'S PROFILE

PICTURE 2: SUSSEX'S GHG EMISSIONS MAP

III. THE COMMUNITY'S PROFILE


Challenges

- ✓ The Town's population had increased low rate of 1% between 2006 and 2016.
- ✓ Responsibilities and demand for municipal services may increase in short term and medium term impacting on municipal energy needs.

Opportunities

- ✓ The community growth of population must be considered an opportunity.
- ✓ The main challenge <u>and opportunity</u> for Sussex, the Town and its Community, are to find solutions to reduce energy use, to produce clean energy and to potentially generate income as well as a good return on investment.
- ✓ Sussex is aiming to promote energy efficiency and clean energy projects and programs in the Community for example by:
 - Promoting electric and clean equipment to remove residential oil furnace;
 - Promoting EV acquisition and use;
 - Negotiating deal with clean tech industries and businesses to develop green and clean projects on its territory.

Sussex aims to be a New Brunswick leader in renewable energy production

IV. THE PLAN'S SUMMARY

A. THE PLAN

The Plan aims to help Sussex and its Community to face main challenges.

- > Reduce dependency on fossil energies:
 - Reduce by <u>at least 25%</u> residential heating oil use
- > Curb down energy use, expenses and reduce GHG emissions
 - Promote individual and collective energy efficient habits:
 - a. Implement an ongoing anti-idling campaign & fuel efficient driving all across the community
 - b. Increase by at least 25% clothes line usage
 - Promote energy efficient technologies:
 - a. LED lighting to replace 60% all lights in the community
 - b. At least half of residential and commercial to improve their energy efficiency
 - Promote energy wise decision-making: smaller vehicles are in average 20% more fuel efficient
- > Foster a shift towards low carbon transportation solutions integrating EV infrastructure, promotes alternative fuel vehicles
 - Use existing programs and incentives to increase the number of Electric and Hybrid Cars and to install more Charging Stations
- > Generate income with local renewable energy production:
 - A. Geothermal District Energy (Short term)
 - B. Solar Farms PV (Medium or long term Project)
- > Expand transportation alternatives by setting up a community van service

IV. THE PLAN'S SUMMARY

B. THE STRATEGY

Strategy's Summary Implementation and monitoring Procedures

General Procedures

1 Annual sectorial review meeting

Annual Community GHG & Energy Action Plan Update Reaching PCP Milestone 4 Annual or biennial inventory update (Community & Corporate) **Reaching PCP Milestone 5**

Project Portfolio Revision: New & Retrieved Project

Project Portfolio	Procedures
--------------------------	------------

Pro	oject Portfolio Procedures					
	Residential					
R 1	LED lighting					
1	Annual activity review report	Status, project implementation development				
R 2	Clean Energy Conversion (Oil to Electricity)				
1	Annual activity review report	Status, project implementation development				
2	Monitoring activities	GHG & GJ reduction evaluation				
R 3	Energy efficiency (Residential buildings)					
1	Annual activity review report	Status, project implementation development				
2	Monitoring activities	GHG & GJ reduction evaluation				
R 4	Energy efficiency - Residential - Clothes Li	ne Program				
1	Annual activity review report	Status, project implementation development				
	ICI (Institutional, Commercial & Industrial)					
ICI 1	ICL 1 LED lighting					

ICI 1 LED lighting

1 Annual activity review report: Status, project implementation development

ICI 2 Energy efficiency (commercial buildings)

1 Annual activity review report Status, project implementation development

GHG & GJ reduction evaluation 2 Monitoring activities

IV. THE PLAN'S SUMMARY

B. THE STRATEGY (CONTINUED)

Pro	Project Portfolio Procedures							
	Transportation							
T 1	Electric Vehicle Community Program							
1	Annual activity review report	Status, project implementation development						
2	Monitoring activities	kWh credit, EV purchase information						
T2	Idle-free Policy							
1	Annual activity review report	Status, project implementation development						
T3	Fuel-efficient driving							
1	Annual activity review report	Status, project implementation development						
T4	Compact vehicles							
1	Annual activity review report	Status, project implementation development						
T 5	Community Van							
1	Annual activity review report	Status, project implementation development						
2	Monitoring activities	EV purchase information						
	Local Renewable Energy Production							
RE 1	Geothermal Energy System							
1	Annual activity review report	Status, project implementation development						
2	Monitoring activities	GHG & GJ reduction evaluation						
3	According to potential volume - Carbon Credit Registration process: Year status, registered credits, etc.							
RE 4	RE 4 Solar Photovoltaic							
1	Annual activity review report	Status, project implementation development						
2	Monitoring activities GHG & GJ reduction evaluation							
3	According to potential volume - Carbon Credit Registration process: Year status, registered credits, etc.							

V. THE INVENTORY

COMMUNITY GHG INVENTORY

V. THE INVENTORY

The Town of Sussex has joined the Climate Change and Energy Initiatives Program by commissioning UMNB and YHC Environnement to develop an inventory of its GHG emissions that will be used to develop an action plan that includes a suite of measures. to control and reduce GHG emissions from their sources.

Sussex's emissions inventory consists of two separate components. The first is emissions from the activities of the municipal administration (the Corporate) and the second covers the entire territory of the Municipality (the Community).

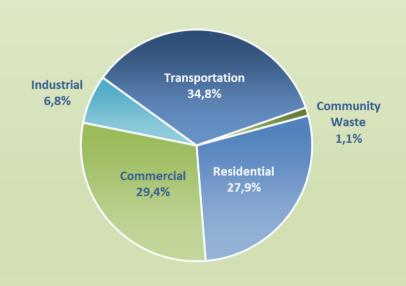
This document covers the Greenhouse Gas Emission Inventory for the 2015 reference year of the Community Component of the Town of Sussex. The relevant additional elements are detailed in the appendices.

V. THE INVENTORY

A. SUMMARY

The community component consists of five emission sectors. For Sussex, the total emissions of the community is approximately 46 748 tons of CO_2 equivalent. Most of these came from transportation that is 34.8%. Commercial sector generated 29.4% of emissions, residences 27.9%, industries 6.8% and finally 1.1% of emissions are attributed to the community waste.

The Community, with its 4 282 inhabitants has a per capita emission rate of 10.9 tons of CO₂ equivalent


TABLE 1 :

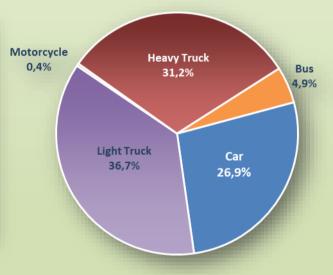
COMMUNITY GHG EMISSIONS FOR THE BASE YEAR

GHG (tons eCO ₂)	2015	
Residential	13 044	
Commercial	13 752	
Industrial	3 183	
Transportation	16 247	
Community Waste	522	
Total	46 748	
Population	4 282	
GHG per capita (teCO2)	10,9	

GRAPH 1 :

COMMUNITY GHG EMISSIONS BREAKDOWN BY SECTOR (TECO₂)

V. THE INVENTORY


B. TRANSPORTATION

For the year 2015, the Sussex community had 3 599 vehicles numbered on its territory. With 16 247 tons of eq. CO_2 , the transportation sector is responsible for a large part (34.8%) of greenhouse gas emissions of the community (see Graph 1). Emissions from the sector come from five (5) subclasses; light truck because of their large number, form the category that generates the most emissions from GHG, with 36.7% of the total sector. Heavy Truck is in second place with 31.2%, follow car 26.9%, bus 4.9%, and finally motorcycle with 0.4%.

TABLE 2:
TRANSPORTATION GHG EMISSIONS BREAKDOWN
BY VEHICLE TYPE (TECO₂)

Vehicle Type				
veincie Type	Number	%	(teCO ₂)	%
Car	1 735	48,2%	4 373	26,9%
Light Truck	1 520	42,2%	5 963	36,7%
Motorcycle	121	3,4%	57	0,4%
Heavy Truck	209	5,8%	5 064	31,2%
Bus	14	0,4%	789	4,9%
Total	3 599		16 247	

GRAPH 2:
TRANSPORTATION GHG EMISSIONS BREAKDOWN
BY VEHICLE TYPE (TECO₂)

V. THE INVENTORY

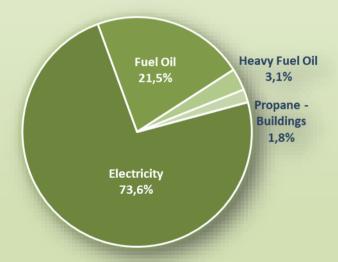
C. Industrial, Commercial and Institutional Buildings (ICI)

In 2015, an estimated 29 979.2 tons of eq. CO_2 , greenhouse gas emissions come from Sussex's residential and industrial, commercial and institutional (ICI) sectors. Electricity gets noticed as first source of GHG emissions with 22 064.8 tons of eq. CO_2 . Fuel oil and heavy fuel oil assume 6 433.6 and 927.6 tons and propane - building use emits 553.2 tons eq. CO_2 .

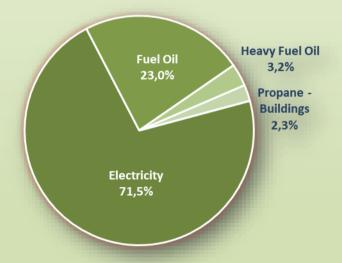
TABLE 3 :

COMMUNITY GHG EMISSIONS AND ENERGY CONSUMPTION BY TYPE

Energy	2015					
Lifetgy	Volume	Unit	(teCO ₂)	%	(Gj)	%
E ectricity	78 802 988	kWh	22 064,8	73,6%	283 691	71,5%
Fuel Oil	2 352 201	Liters	6 433,6	21,5%	91 265	23,0%
Natural Gas	0	m3	0,0	0,0%	0	0,0%
Diesel - Buildings	0	Liters	0,0	0,0%	0	0,0%
Heavy Fuel Oil	294 926	Liters	927,6	3,1%	12 534	3,2%
Propane - Buildings	358 275	Liters	553,2	1,8%	9 068	2,3%
District Energy	0		0,0	0,0%	0	0,0%
Total			29 979,2		396 558	



V. THE INVENTORY


C. Industrial, Commercial and Institutional Buildings (ICI) (continued)

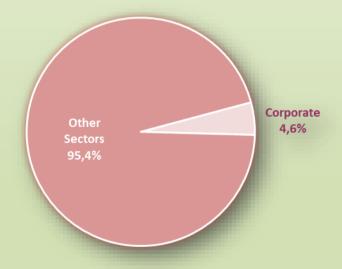
Electricity produces 73.6% of the sector's emissions and meets 71.5% of the Sussex Territory's energy needs for the residential sector and ICI. Fuel oil, heavy fuel oil and propane – building accounted for 21.5%, 3.1% and 1.8% of greenhouse gases, respectively, and together they contributed 23.0%, 3.2% and 2.3% of their energy demand in their sectors for the Sussex community.

Graph 3 : Residential and ICI GHG Emissions Breakdown by Energy Type ($teCO_2$)

GRAPH 4:
RESIDENTIAL AND ICI ENERGY CONSUMPTION BREAKDOWN
BY ENERGY TYPE (GJ)

V. THE INVENTORY

D. Community Waste


In 2015, the 1 503 tons of Sussex's solid waste produced 522.5 tons of eq. CO_2 greenhouse gas. They are responsible for 1.1% of the total emissions of the Community (see Graph 1).

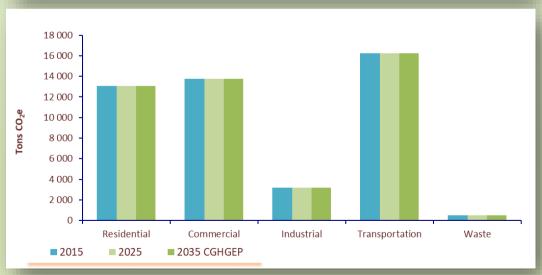
The estimated share of corporate emissions is 24.1 tons of eq. CO_2 (4.6% of the total) which would correspond to nearly 59 tons of waste.

TABLE 4 : COMMUNITY LANDFILL WASTE BY CATEGORY

Waste Category		2015			
waste Category		Tons	%	(teq. CO ₂)	%
Corporate		59	3,9%	24,1	4,6%
Other Sectors		1 444	96,1%	498,4	95,4%
,	Total	1 503		522,5	

GRAPH 5 :
COMMUNITY LANDFILL WASTE GHG EMISSIONS
BY CATEGORY (TECO₂)

V. THE INVENTORY


E. Community Emissions Forecast

Community emissions forecast present how the inventory emissions may evolve at the end of the action plan (2025), based on a business as usual scenario (BAU), i.e. without any direct intervention of the decision-makers. Factors such as demographic change or economic conditions are taken into account in determining future levels of current emissions.

For Sussex, the business as usual scenario anticipates that, apart from the present action plan reduction, the level of the community GHG emissions will remain stable.

TABLE 5 :
COMMUNITY EMISSIONS FORECAST BY SECTOR

	Current emissions	% Change Expected**	Emissions in Forecast year	Emissions in CEP Forecast year
Residential	13 044,3	0,0%	13 044,3	13 044,3
Commercial	13 751,7	0,0%	13 751,7	13 751,7
Industrial	3 183,2	0,0%	3 183,2	3 183,2
Transportation	16 246,7	0,0%	16 246,7	16 246,7
Waste	522,5	0,0%	522,5	522,5
Total Emissions (t CO2e)	46 748,4		46 748,4	46 748,4

V. THE INVENTORY

E. Community Emissions Forecast (continued)

The projected emissions, seek to present how inventory emissions will evolve at the end of the action plan, based on a business as usual scenario, ie without any direct intervention of the decision-makers. Factors such as demographic change or economic conditions are taken into account in determining future levels of current emissions.

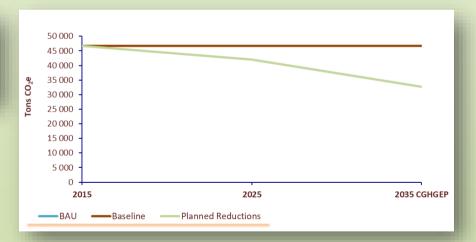
For Sussex, the business as usual scenario anticipates that, apart from the present action plan reduction, the level of the community GHG emissions will remain stable. This action plan is expected to bring them down by 10% in 2025 and by 30% in 2035.

Table 6 : Community Information

Base Year	2015			
Forecast Year*	2025 2035 CGHGEP			
Reduction Target by Forecast Year* (%)	10,0%	30,0%		

Baseline: 2015 (Base year)

 $\ensuremath{\mathsf{BAU}}\xspace$ BAU: Business as usual scenario forecast (when BAU scenario predicts no


change in GHG emissions, it equals to Baseline)

2025: Action Plan deadline

CGHGEP or CEP: Community Greenhouse Gases Energy Planning. Long term

projects requiring a longer horizon than the current action plan.

GRAPH 6 :
COMMUNITY EMISSIONS FORECAST

VI. THE PLAN

THE PLAN

VI. THE PLAN

A. STRATEGY FOR GHG REDUCTION AND PROJECT SELECTION

Community Action Plan

As noted in Section II - Strategy, for PCP and GMF, the GHG emission reduction targets of participating municipalities are set on a voluntary and non-binding basis.

Taking into account the context of the Municipality, the community plan proposes the achievement of a target of 10% reductions in GHG emissions for 2025 and 30% reductions in GHG emissions for 2035 according to the reference year 2015.

Table 7 : Community Information

Objectives and year set by Sussex:						
Community Action plan :						
Reduction Target: 10% and 30%						
	• Base year : 2015					
		• Forecast year : 2025 and 2035				

VI. THE PLAN

A. STRATEGY FOR GHG REDUCTION AND PROJECT SELECTION

Guiding Principles

The approach behind the development of the Town of Sussex's Action Plan as part of UMNB's CCEI is to develop an action plan that includes projects which:

1) Improve the quality of life of communities (better environment and savings)

- ✓ Improve the quality of life of communities (better environment and savings);
- ✓ Generate GHG emission reductions that meet the goals and needs of the community;
- ✓ Allow as much as possible to generate energy savings that guarantee the sustainability of the actions of the Municipality and its community.

2) Use community resources to develop the expertise of UMNB and New Brunswick members

- ✓ Optimize the use of community resources and know-how to maximize socio-economic benefits;
- ✓ Help develop local and regional expertise to increase the knowledge of communities and New Brunswick...

3) Will become examples and models for New Brunswick and other communities in Canada

✓ The projects must enable UMNB member municipalities to stand out/take leadership, to respond to challenges of climate change for New Brunswick communities, to protect the environment, improve the quality of life, and become role models for action and resilience.

VI. THE PLAN

A. STRATEGY FOR GHG REDUCTION AND PROJECT SELECTION

Global Approach

«GOOD PRACTICE» PROJECTS


The action plan prioritises projects considered as "good practices". These projects correspond to the application of, for example, measures and technologies supported by the programs of New Brunswick Power, the Government of New Brunswick or Canada.

✓ These "Good Practice" projects form the basis of the Action Plan.

MODEL PROJECTS & UMNB PILOT PROJECTS

As part of UMNB's CCEI, the action plan also proposes to municipalities two types of model projects & pilot projects :

- 1. Transport electrification & EV integration in the community
- 2. EV & Carsharing SAUV^éR * (Group Project)

^{*} SAUV^éR concept is a fleet management and carsharing system for municipalities, organizations and companies. Its objectives are both to protect the environment and to create a synergy using regional municipalities to develop innovative technologies and services to create and support local expertise and services and enhance regional development.

VI. THE PLAN

B. REFERENCE LEVEL AND TARGET

The goal of the Town of Sussex's Community Action Plan is to reduce greenhouse gas emissions by 10% by 2025 and 30% by 2035 from their 2015 baseline.

For Sussex, the emissions calculated for the year 2015 allow us to estimate the reductions required to reach the target set by the Community's action plan to approximately 4 674.8 tons or 10% by 2025 and 14 024.5 tons or 30% by 2035.

TABLE 8 :
BASELINE AND TARGET

		Year		
		Base	Forecast	Forecast CGHGEP
	Tonnes of CO₂ equivalent	2015	2025	2035
1	Current Emissions	46 748		
2	Community Emissions Forecast (BAU Scenario)		46 748	46 748
3	Reduction Target		10,0%	30,0%
4	Forecast emissions (target) (line 1 - line 5)		42 074	32 724
5	Total reductions to be achieved (line 1 - line 4)		4 674,8	14 024,5
6	Total reductions to be achieved (Including BAU Scenario)		4 674,8	14 024,5

VI. THE PLAN

C. ANALYSIS OF THE PROJECTED RESULTS OF THE ACTION PLAN

Achieving the objective of Sussex's Action Plan would mean that the level of community GHG emissions for the year 2025 be at 41 786 tons of eq. CO_2 . This is a decrease of 4 962 tons from the 2015 emissions level of 46 748 tons of eq. CO_2 . This represents a potential reduction of 10.6%, which is 0.6 percentage point above the target of 10% and 287.6 tons more than the targeted reduction of 4 674.8 tons (see Table 8).

Table 9 :

Analysis of the Outcome of the Action Plan

	Total reductions			Forecast CGHGEP 2025
		eCO ₂ (t)	%	
1	Current Emissions (Base year)	46 748	100,0%	
2	Early action results	0,0	0,0%	
3	Expected reductions in the Action Plan	4 962	10,6%	
4	Total Reductions (line 2 + line 3)	4 962	10,6%	
5	Level of anticipated emissions (forecast year) (line 1 - line 4)	41 786	89,4%	
6	Gap with the target (Action Plan 2025)	287,6	0,6%	
7	Considering BAU Scenario (2025)	287,6	0,0%	10,6%

VI. THE PLAN

D. PROJECT PORTFOLIO

The most recent measures, technologies and programs have been analyzed and evaluated. They form the basis of the action plans produced by YHC Environnement. Then, based on the 2015 inventory data, as well as the characteristics and needs of the Community of Sussex, the development of the Project Portfolio was completed.

The action plan contains twelve (14) projects whose potential reductions are estimated at 4 962.5 tons of CO₂ equivalent (see Table 10).

VI. THE PLAN

D. PROJECT PORTFOLIO

Project Portfolio Summary

TABLE 10: COMMUNITY PROJECT PORTFOLIO

	Projects (Measures, Actions, Technologies)	Total GHG reductions (tons)
	Residential	822,5
1	R1 LED lighting	159,9
2	R2 Clean Energy Conversion (Oil to Electricity) Rate: 25%	144,2
3	R3 Energy efficiency (Residential buildings)	442,0
4	R4 Energy efficiency - Residential - Clothes Line Program Rate: 25%	76,4
	ICI	968,0
5	ICI 1 LED lighting	543,6
6	ICI 2 Energy efficiency (commercial buildings)	424,4
	Transportation	1 497,9
7	T1 Electric Vehicle Community Program	62,1
8	T2 Idle-free Policy	1 014,9
9	T3 Fuel-efficient driving	308,1
10	T4 Compact vehicles	103,5
11	T5 Community Van	9,3
	Local Renewable Energy Production	1 674,1
12	RE 1 Geothermal Energy System Scenario 2 Short term (2025)	1 576
13	RE 2 Solar Photovoltaic	98,1
	Community Waste	-
14	W1 Domestic composting	-
	TOTAL	4 962,5

D. PROJECT PORTFOLIO

1. Infrastructure (lighting) - LED lighting

LED technology is more reliable with a much longer life span compared to other types of lighting. According to Hydro-Quebec: "Most LED bulbs last about 25,000 hours, while incandescent lightbulbs last only 1,000." So if they're on 8 hours a day, 365 days a year, LED bulbs could last more than 8 years". In the community, voluntary conversions and those made through information, awareness and incentive campaigns reduce electricity consumption.

It is assumed that 60% of the incandescent bulbs will be replaced by LED bulbs at the end of this action plan.

		Base year:	2015
LED lighting	GJ	kWh	Ratio
1 Total residential energy consumption	171 163	47 545 174	
2 Estimated residential lighting power consumption	6 230	1 730 644	3,64%
3 Total CI sector energy consumption	183 265	50 906 846	
4 Estimated commercial lighting power consumption	19 646	5 457 214	10,72%
5 Total industrial energy consumption	42 131	11 703 101	
6 Estimated industrial lighting power consumption	1 534	425 993	3,64%
7 Efficiency gains due to conversion		55%	
8 Conversion rate for 2025		60%	
9 Annual energy conversion reduction (Residential)		571 113	kWh
10 Annual Energy Conversion Reduction (Commercial and Institutional)		1 800 881	kWh
11 Annual Energy Reduction in Conversion (Industrial)		140 578	kWh
12 Reduction of GHG emissions from conversion (Residential)		160	t. eq. CO ₂
13 Conversion GHG emission reduction (Commercial and Institutional)		504	t. eq. CO ₂
14 Reduction in Conversion GHG Emissions (Industrial)		39	t. eq. CO ₂
15 Reduction of GHG emissions from conversion (all sectors)		704	t. eq. CO ₂

Note:

Line 12- Table 10, Project 1 R 1 Lines 13 & 14- Table 10, Project 5 ICI 1

VI. THE PLAN

D. PROJECT PORTFOLIO

2. Infrastructure (heating, cooling) - Clean Energy Conversion (Oil to Electricity)

Sussex wishes to reduce heating oil consumption in the community in favor of electricity. The municipality plans to run a survey on heating oil users for a better understanding of their number, needs and demands. The survey will allow to adjust the project's target and timeline.

According to the community inventory, almost 28% of the community's GHG emissions come from the residential sector. Fuel furnaces are less efficient that electric heater.

	Base year: 2015			
	Clean Energy Conversion (Oil to Electricity)			
1	Energy conversion		25,0%	
2	Participating households (number and %) *		498	25,0%
3	Energy saved per (Gj)		2 695	
4	Reduction of GHG emissions (tonnes and %)		144,2	5,7%
	* Rough estimation			
	Estimation details			
5	Heating oil consumption	35 930	Gj	
6	Heating oil GHG emissions	2 533	eCO ₂ (t)	
7	Projects' rate of implementation To Set	25%	Target	
8	Number of Dwellings in the community	1 990		
9	Participating households	498	Rough estimation	n
10	Electricity needs (result of conversion)	6 288	Gj	
11	Electricity GHG Emissions (result of conversion)	489	eCO ₂ (t)	
12	Residual Heating Oil consumption	26 948	Gj	
13	Residual Heating GHG Emissions	1 900	eCO ₂ (t)	
14	GHG reduction	144,2	eCO ₂ (t)	

VI. THE PLAN

D. PROJECT PORTFOLIO

3. Infrastructure (heating, cooling & envelope) - Energy efficiency (Residential buildings)

According to the community inventory, almost 28% of the community's GHG emissions come from the residential sector. Improving energy efficiency is therefore a key means of reducing overall community emissions. NB Power has developed a series of financial incentive programs such as waterproofing, insulation or replacement of home heating systems. The average implementation rate of these measures is set at 50%. The average efficiency of all these measures is set at 10%.

	Base year: 2015			
	Energy efficiency (Residential buildings)			
1	Energy saving (estimated)		10,0%	
2	Participating households (number and %) *		995	50,0%
3	Energy saved per year (Mj)		5 812 712	
4	Reduction of GHG emissions (tons and %)		441,95	5,0%
	* Rough estimation			
	Estimation details			
5	Total electricity Consumption	134 838	Gj	
6	Energy use for heating purposes	65,94%		
7	Electric Consumption - heating	88 912	Gj	
8	Fuel consumption - heating	26 948	Gj	see below
9	Propane consumption - heating	394	Gj	
10	Electricity consumption GHG emissions	6 915	eCO ₂ (t)	
11	Fuel consumption GHG emissions	1 900	eCO ₂ (t)	
12	Propane GHG emissions	24	eCO ₂ (t)	
13	GHG emissions targeted	8 839	18,9%	
14	Projects' rate of implementation	50%	To Set	
15	Total community emissions	46 748	eCO ₂ (t)	
16	Average energy efficiency gain	10,0%	To Set	
17	Number of Dwellings in the community	1 990		
18	Participating households	995	Rough estimation	

D. PROJECT PORTFOLIO

4. Infrastructure (heating, cooling) - Energy efficiency - Residential - Clothes Line Program

Sussex wishes to promote simple yet efficient measures that will reduce energy costs and carbon footprint of its citizens. According to the community inventory, almost 28% of the community's GHG emissions come from the residential sector. Clothes lines have multiple advantages: Low installation/repair cost, saves money, zero GHG emission, etc.

The average implementation rate of these measures is set at 25%.

		Base year:	2015
Infrastructure (heating, cooling & envelope)			
1 Energy saving (estimated)		12,5%	
2 Participating households (number and %)		455	22,9%
3 Energy saved per year (kWh)		272 970	
4 Reduction of GHG emissions (tons and %)		76,4	0,2%
Estimation details			
5 Average electric clothes Dryer consumption per household	100	kWh / month	
6 Total power use for clothes drying	1 200	kWh / year	
7 Number of Dwellings in the community	1 990		
8 Ratio of households with an electric clothes dryer	91,4%		
9 Annual estimated power used by laundry dryers	2 183 757	kWh/year	
10 Total estimated GHG emissions of laundry drying	611	eCO ₂ (t)	
11 Clothes lines efficiency	100%		
12 Clothes lines use rate	50%	6 months / year	
13 Projects' rate of penetration	25%	To set	
14 Participating households	455		
15 Energy reduction	272 970	kWh	
16 GHG reduction	76		
17 Energy savings	28 907	\$	
18 Total community emissions	46 748	eCO ₂ (t)	

VI. THE PLAN

D. PROJECT PORTFOLIO

5. Infrastructure (heating, cooling & envelope) - Energy efficiency (Commercial buildings)

According to the community inventory, more than 29% of the community's GHG emissions come from the commercial and institutional sector. Improving energy efficiency is therefore a key means of reducing overall community emissions. NB Power has put in place a program called "Energy Smart Commercial Buildings Retrofit Program" for Commercial Buildings.

The average implementation rate of these measures is set at 50%. The average efficiency of all these measures is set at 10%.

	Base year: 2015				
	Energy efficiency (commercial buildings)				
1	Energy saving (estimated)		0		
2	Energy saved per year (Mj)		5 767 942		
3	Reduction of GHG emissions (tons and %)		424,39	5,0%	
	Estimation details				
4	Total electricity Consumption	122 422	Gj		
5	Energy use for heating purposes	48,35%			
6	Electric Consumption - heating	59 191	Gj		
7	Fuel consumption - heating	48 222	Gj		
8	Propane consumption - heating	7 946	Gj		
9	Electricity consumption GHG emissions	4 604	eCO ₂ (t)		
10	Fuel consumption GHG emissions	3 399	eCO ₂ (t)		
11	Propane GHG emissions	485	eCO ₂ (t)		
12	GHG emissions targeted	8 488	18,2%		
13	Projects' rate of implementation	50%	To Set		
14	Total community emissions	46 748	eCO ₂ (t)		
15	Average energy efficiency gain	10,0%	To Set		

VI. THE PLAN

D. PROJECT PORTFOLIO

6. Transportation - Idle-free Policy

Idling refers to running a vehicle's engine when the vehicle is not in motion. Idling occurs when car owner is warming up or cooling down a vehicle, drivers are stopped at a red light, waiting while parked outside a business or residence, or otherwise stationary with the engine running. For the average vehicle with a 3-litre engine, every 10 minutes of idling costs 300 milliliters (over 1 cup) in wasted fuel – and one half of a liter (over 2 cups) if your vehicle has a 5-liters engine.

For a successful anti-idling campaign includes

- the adoption of a speed reduction regulation
- carrying out an awareness-raising campaign
- the acquisition and installation of permanent signs

	Base year: 2015			
Idle-free Policy	Gas	soline	Di	esel
1 Number of units	3 333		234	
2 Fuel consumption	4 347 786	litres	2 065 726	litres
4 GHG emissions	10 607	eCO ₂ (t)	5 543	eCO ₂ (t)
5 Average fuel wasted idling	358 364	litres	52 416	litres
6 Average fuel economy	8,2%		2,5%	
7 GHG emissions reduction	874,2	eCO2 (t)	140,7	eCO2 (t)
9 Total GHG Emissions reduction		1014,89	eCO2 (t)	

D. PROJECT PORTFOLIO

7. Transportation - Fuel-efficient driving

Driving can significantly influence fuel consumption. We assume in this project that community drivers, through incentives, promotional campaigns and economic reasons, will gradually integrate these principles of effective behaviour.

According to Natural resources Canada, Adopting these five fuel-efficient driving techniques can reduce fuel consumption and carbon dioxide emissions by as much as 20 percent (20%):

- 1. Accelerate gently
- 2. Maintain a steady speed
- 3. Anticipate traffic
- 4. Avoid high speeds
- 5. Coast to decelerate

Fuel-efficient driving	Base year: 2015		
1 Community transportation emissions	16 247	eCO ₂ (t)	
2 Total community emissions	46 748	eCO ₂ (t)	
3 Number of targeted units	346		
4 Reduction of GHG emissions (tons and %)	308	0,66%	

VI. THE PLAN

D. PROJECT PORTFOLIO

8. Transportation - Electric Vehicle Community Program

The EV Community Program is proposed for the Community GHG and Energy Planning timeline. The program is related to the NB Climate Action Plan and will help the community to integrate EV and gradually replace conventional vehicle use.

Information: EV use electrical energy to power an electric motor, they also reduce society's dependence on environmentally damaging fossil fuels while lowering greenhouse gas emissions and air pollution. Electric cars are cost effective, good for the environment and deliver great performance. There are two kinds of electric car:

Fully Electric Cars are powered 100% by electricity and have zero tailpipe emissions. Fully electric cars can travel 200-400 km on a single charge.

Plug-in Hybrid Electric Cars have small battery packs for short all-electric driving distances (20-80 km) before a gasoline engine or generator turns on for longer trips.

		Base year:	2015
		Target year:	2025
1 GHG Target - eCO ₂ (t)		62	
2 Target number of EV units for 2025	Minimum & maximum	20	56
3 NB CCAP Target for EV units for 2025 (estimated)	Total & annually	56	7
4 GHG emissions reduction (tons and %)	Minimum	62	0,1%
5	Maximum	172	0,4%
6 Transport GHG emissions reduction (%)	Maximum & Minimun	1,1%	0,4%
7 Savings per year (Minimum & maximum)		22 698 \$	20 652 \$
8 Number of car & light Truck		3 254	
9	Minimum & maximum	0,6%	1,7%

VI. THE PLAN

D. PROJECT PORTFOLIO

9. Transportation - Electric Vehicle Community Program (continued)

Charging Station: In 2018, Sussex counts 12 public N2 charging stations (CS) on its territory. Number of public charging stations should be increased locally and regionally. We estimates that EV owners should have private level 2 charging station (500 to 800\$).

	EV-Charging Station (Installed & planned)		
	Location	Comment	Number
		Total	12
Am	sterdam Inn & Suites 143 Main St, - N2 Sun Country		1
	Gatewall Mall	Proposed W1	1
	Arena	Proposed W1	1
	Civic Centre	Proposed W1	1
	Amsterdam Inn	Proposed W1	1
	Downtown Core	Proposed W1	1
	Works Garage	Proposed W1	1
	Library	Proposed W1	1
	Balloon Festival / Fleamart	Proposed W1	1
	Arts & Culture Centre	Proposed W1	1
	Train Station	Proposed W1	1
	Kingswood Chapel	Proposed W1	1

VI. THE PLAN

D. PROJECT PORTFOLIO

10. Transportation - Compact vehicles

The community vehicle fleet is becoming more fuel-efficient and fuel-efficient, consuming about 20% less fuel. Change is achieved through targeted incentives, public awareness, a gradual change in transportation patterns, or the availability of more attractive business models.

	Base year: 2015		
Fuel-efficient driving			
1 Community transportation emissions	16 247	eCO ₂ (t)	
2 Total community emissions	46 748	eCO ₂ (t)	
3 Number of targeted units	346		
4 Reduction of GHG emissions (tons and %)	308	0,66%	

VI. THE PLAN

D. PROJECT PORTFOLIO

11. Transportation - Community Van

Community Van is a service offered by the municipality which provides the community and its members a shared means of transportation for short or long distance travels. Because the community van is a form of public transportation service, it helps reducing the number of commuting cars.

		Base year : 2015	
	Community Van		
1	One-passenger cars removed from the roads	6	Units
2	km travelled	15 000	
3	Reduction of GHG emissions (tons and %)	9,29	60,5%
4	Passenger Van	1	Units
5	passenger capacity	12	seats
6	Fuel efficiency (L/100 KM)	17	L/100 km
7	km travelled	15 000	km
8	Fuel consumption	2 490	Liters
9	GHG emissions (tons)	6,1	eCO ₂ (t)
10	Occupied seats in average	50%	To Set
11	One-passenger cars removed from the roads	6	Units
12	Average Fuel consumption rating of removed cars	7	L/100 km
13	Avoided fuel consumption	6 300	Liters
14	Avoided GHG emissions	15,4	eCO ₂ (t)
15	GHG reductions	9,3	eCO ₂ (t)

VI. THE PLAN

D. PROJECT PORTFOLIO

12. Renewable Energy Production – Geothermal Energy System

In 2016, the Potash Corporation of Saskatchewan decommissioned their Potash mine in Penobsquis which is now in the stage of flooding and presents a unique investment opportunity. The Town of Sussex commissioned a Technical feasibility study of the geothermal capability of the Penobsquis mine site. The study assembled background data from local Penobsquis industry partners, PotashCorp and Avon Valley Floral, to enable the modelling of 20 example geothermal applications.

"Currently, the Avon Valley Floral greenhouse, in Penobsquis, employs 12 full time employees. During their growing season, this number rises to 50 to 60 employees. Installation of a district system could provide Avon Valley Floral the economic advantage to operate 12 months of the year. A district system could also provide an economic advantage to prospective proponents who connect to the district system (additional greenhouses, refrigeration warehouse and or data storage centers etc.). This would create more jobs in the region and additional revenue for the utility provider which could prompt expansion of the district system."

This project considers the scenario 2 which is producing geothermal energy for the current greenhouse operating 12 months per year.

	Geothermal Energy System	I 1B C 2025	
1	Total Energy saved (Gj)		20 263
2	Total GHG reductions (t eCO2)		1 576
2	Geothermal project - scenario 2	Short term (2025)	(Scenario : i 1B C)
	Avon Valley Floral greenhouse (12 months/yr)	Quantity (GJ)	Quantity (kWh)
а	Electricity (grid)	28 903	8 028 571
b	Electricity (geothermal)	8 640	2 400 000
	Difference	20 263	5 628 571

D. PROJECT PORTFOLIO

13. Renewable Energy Production - Solar Photovoltaic

Sussex wishes to produce renewable energy to generate income and reduce its carbon footprint.

The Sussex community already has a solar farm which is a privately owned by Mr. Frank Jopp. This initiative is used as an inspirational model for other members of the community to create other solar farms.

As it is the case for the existing solar farm, the produced energy could be return to the Energy NB grid or be used to satisfy power demand of one or several consumers.

This project assumes that two more solar farms are set up in the future years.

These installations are assumed to be of similar size than the existing solar farm.

The revenues are calculated as if all the power production were for self-consumption

	Solar Photovoltaic			Base year : 2015		
1	Energy conversion	Target year	2025			
2	Energy saved per (Gj)			1 261		
3	Reduction of GHG emissions	(tons and %)		98	0,4%	
	Estimation details					
4	Electricity consumption (all s	sectors)	283 691	Gj		
5	Electricity consumption (all s	sectors) GHG emissions	22 065	eCO ₂ (t)		
6	Renewable Electricity Produc	ction	1 261	Gj		
7	Renewable Electricity Produc	tion ratio	0,4	%		
8	GHG reduction		98,1	eCO ₂ (t)		
9	GHG reduction for all sector	electricity use (%)	0,4	%		

VI. THE PLAN

D. PROJECT PORTFOLIO

14. Solid Waste - Domestic composting

The Town intends to promote and establish a" domestic composting culture "with the population through actions such as training, composting, etc. This project involves the distribution of 200 domestic composters as soon as possible.

		Base year: 2015		
	Solid Waste			
1	Compostable materials diverted from landfill	49		
2	GHG emissions reduction (tons & %)	-		0,0%
3	Duration of the project	7		
	Estimation details			
4	Community Waste sector emissions	522	eCO ₂ (t)	
5	Total community emissions	46 748	eCO ₂ (t)	
6	Residential solid waste	725	Tons	
7	Number of Dwellings in the community	1 990		
8	Number of composters to be distributed	200	Units	
9	Number of users per composter	2,24		
10	Average organic material per person / year	0,184	Tons	
11	Proportion of organic matter actually composted	60%		
12	Compostable materials diverted from landfill	49,46	Tons	
13	Avoided Emissions	17	eCO ₂ (t)	
14	Emissions from composting	20	eCO ₂ (t)	
15	Net Short-term Reductions	0	eCO ₂ (t)	

VII. APPENDIX

PARTNERS FOR CLIMATE PROTECTION PROGRAM (PCP) - METHOD

UMNB CCEI allows participating municipalities to complete the first 3 steps of the Partners for Climate Protection (PCP) program. Steps 4 and 5 consist of the implementation of action plans and the monitoring and reporting of results.

MILESTONE 1 CREATING A GREENHOUSE GAS EMISSIONS INVENTORY AND FORECAST

A greenhouse gas inventory brings together data on community and municipal energy use and solid waste generation in order to estimate greenhouse gas (GHG) emissions in a given year. The forecast projects future emissions based on assumptions about population, economic growth and fuel mix.

MILESTONE 2 SETTING AN EMISSIONS REDUCTIONS TARGET

An emissions reduction target can be established at any time. The target is normally set, however, following the development of an emissions inventory and forecast or after the quantification of existing emissions reduction measures.

MILESTONE 3 DEVELOPING A LOCAL ACTION PLAN

A Local Action Plan (LAP) is a strategic document that outlines how your municipality will achieve its greenhouse gas (GHG) emissions reduction target. The LAP covers municipal operations and the community.

